If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2-90x-150=0
a = 4.9; b = -90; c = -150;
Δ = b2-4ac
Δ = -902-4·4.9·(-150)
Δ = 11040
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11040}=\sqrt{16*690}=\sqrt{16}*\sqrt{690}=4\sqrt{690}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-90)-4\sqrt{690}}{2*4.9}=\frac{90-4\sqrt{690}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-90)+4\sqrt{690}}{2*4.9}=\frac{90+4\sqrt{690}}{9.8} $
| 8x+14=2(6x+13) | | 6-3*x^2=0 | | 0.25-x=3+15 | | 3x–14+2(x-9)=2x–2 | | 9Y+23=-7(y+1) | | 1+3x=x-5 | | x+14=9x-4=180 | | 10x-3(2x-7)=3(x+31) | | X+14-9x-4=180 | | 3(x+7)+5=11 | | 5x^2+3x=3x^2+20 | | 4x-10=9x+80 | | (20x+7)+(9x-1)=360 | | 3x+10=6x-10=180 | | 21=u/3-8 | | v/5+8=33 | | 1/9(6x-18)+5=-10 | | (17x+3)=139 | | (5x+4)=59 | | 11x-5x+150=11x+75 | | 15v+2v-12v+v=6 | | x+15=-63 | | 12x-24=-24+24x | | -8x-3=-2x+1 | | 16.2=5.36+4c | | 217y,y=3 | | 17n=7 | | 2^n+2^(n+3)=0 | | 2{w+1}=7w-18 | | 4(x-6)=4x+-8(x+6) | | 0=x^2-5x-16.5 | | 12(12+12)=10(x+10) |